Fabrication of Cellulose Film with Enhanced Mechanical Properties in Ionic Liquid 1-Allyl-3-methylimidaxolium Chloride (AmimCl)
نویسندگان
چکیده
More and more attention has been paid to environmentally friendly bio-based renewable materials as the substitution of fossil-based materials, due to the increasing environmental concerns. In this study, regenerated cellulose films with enhanced mechanical property were prepared via incorporating different plasticizers using ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as the solvent. The characteristics of the cellulose films were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis (TG), X-ray diffraction (XRD), 13C Solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) and tensile testing. The results showed that the cellulose films exhibited a homogeneous and smooth surface structure. It was noted that the thermal stability of the regenerated cellulose film plasticized with glycerol was increased compared with other regenerated cellulose films. Furthermore, the incorporation of plasticizers dramatically strengthened the tensile strength and improved the hydrophobicity of cellulose films, as compared to the control sample. Therefore, these notable results exhibited the potential utilization in producing environmentally friendly cellulose films with high performance properties.
منابع مشابه
Green synthesis of a typical chiral stationary phase of cellulose-tris(3, 5-dimethylphenylcarbamate)
BACKGROUND At present, the study on the homogeneous-phase derivatization of cellulose in ionic liquid is mainly focused on its acetylation. To the best of our knowledge, there has been no such report on the preparation of cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) with ionic liquid 1-allyl-3-methyl-imidazolium chloride (AmimCl) so far. RESULTS With ionic liquid 1-allyl-3-methylimidaz...
متن کاملSynthesis of Cellulose-2,3-bis(3,5-dimethylphenylcarbamate) in an Ionic Liquid and Its Chiral Separation Efficiency as Stationary Phase
A chiral selector of cellulose-2,3-bis(3,5-dimethylphenylcarbamate) (CBDMPC) was synthesized by reacting 3,5-dimethylphenyl isocyanate with microcrystalline cellulose dissolved in an ionic liquid of 1-allyl-3-methyl-imidazolium chloride (AMIMCl). The obtained chiral selector was effectively characterized by infrared spectroscopy, elemental analysis and 1H NMR. The selector was reacted with 3-am...
متن کاملSynthesis and Characterization of Cellulose-graft- Poly (l-lactide) via Ring-opening Polymerization
Cellulose-graft-poly (L-lactide) (cellulose-g-PLLA) was prepared under homogeneous mild conditions. Ring-opening polymerization (ROP) was carried out successfully using 4-dimethylaminopyridine (DMAP) as an organic catalyst in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). The structure of the polymer was characterized by GPC, H NMR, C NMR, FT-IR, TGA, WAXD, and AFM. The results ...
متن کاملAcetylation of Microcrystalline Cellulose by Transesterification in AmimCl/DMSO Cosolvent System.
Recently, IL/cosolvent systems have generated a lot of interest as cellulose-dissolving solvents and reaction media for various kinds of cellulose modification. In the present study, both 1-allyl-3-methylimidazolium chloride (AmimCl)/dimethyl sulfoxide (DMSO) and AmimCl/N,N-dimethylformamide (DMF) systems were employed to synthesize cellulose acetate by transesterification. Microcrystalline cel...
متن کاملEsterification Mechanism of Bagasse Modified with Glutaric Anhydride in 1-Allyl-3-methylimidazolium Chloride
The esterification of bagasse with glutaric anhydride could increase surface adhesion compatibility and the surface of derived polymers has the potential of immobilizing peptides or proteins for biomedical application. Due to its complicated components, the esterification mechanism of bagasse esterified with glutaric anhydride in ionic liquids has not been studied. In this paper, the homogenous...
متن کامل